JOURNAL OF AIRCRAFT
Vol. 44, No. 5, September—October 2007

Cartesian-Like Grids Using a Novel Grid-Stitching Algorithm
for Viscous Flow Computations

Partha Mondal,* N. Munikrishna,* and N. Balakrishnan?
Indian Institute of Science, Bangalore 560 012, India

DOI: 10.2514/1.27854

A novel grid-stitching algorithm has been developed for generating Cartesian-like grids for viscous flow
calculations. A grid is generated by recursive division of Cartesian cells. Unlike the conventional Cartesian-mesh
calculations that involve unit aspect ratio cells, stretching is used to get the high aspect ratio cells and smooth grid
near the body. The grid data are collected in an unstructured format. This novel approach, along with an
unstructured mesh-based flow solver (HIFUN-2D, developed in-house), has been successfully used for numerical
simulations. This grid is successfully used for Euler and laminar flow computations. Partial success has been achieved

for turbulent flow simulations.

L

HE developments made in the past decade in the area of

unstructured mesh calculations have made computational fluid
dynamics (CFD) sufficiently mature in providing the designer with
quick estimates of design parameters. In spite of this advancement,
there is sufficient scope for further enhancing the efficiency of the
CFD tools, particularly in the area of grid generation. Indeed, any cut
in time to generate a good grid can make CFD more useful in offering
quicker estimates of design parameters. This requirement made the
CFD community reinvent the Cartesian grid [1] and is the subject
matter of this work. The foremost advantage of using a Cartesian
mesh is the automation that the procedure offers in grid generation.
Apart from this, Cartesian mesh in conjunction with tree data
structure becomes a natural choice for solution-adaptive grids and
dynamic flow computations involving moving bodies. Several
inviscid [2-5] and viscous [2,4,6—15] flow computations have been
reported using Cartesian meshes. In spite of the success involving
inviscid flow computations, the use of Cartesian meshes for viscous
flows was not straightforward and involved several modifications of
the basic scheme. The conventional Cartesian-mesh calculations
involve unit aspect ratio cells and result in the appearance of small cut
cells close to the body. A jump in cell volumes (particularly, close to
the body) can lead to oscillatory wall data [2]. Apart from this, it is
also not practical to fill the boundary layer with unit aspect ratio cells,
particularly, for 3-D turbulent flows. More important, the lack of
positivity of the viscous discretization procedure can lead to loss in
monotonicity, not just in the wall data, but also in regions of
embedded mesh [2]. One of the means to overcome this problem is
the use of hybrid grids, wherein the region of viscous layer is filled
with structured grids comprising high aspect ratio quadrilateral
volumes, and the potential flow region is filled with unit aspect ratio
Cartesian grids [4,11]. Other methods to generate grids that look like
hybrid grids [7,12] involve generating a Cartesian-grid front close to
the body (by employing some strategy for volume deletion) and
obtaining the viscous grid close to the body by a suitable projection
procedure. In our view, any of the aforesaid strategies can seriously
hamper automated grid generation.

Introduction

Received 16 September 2006; revision received 17 November 2006;
accepted for publication 30 November 2006. Copyright © 2006 by the
Anmerican Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 0021-8669/
07 $10.00 in correspondence with the CCC.

*Research Scholar, Computational Aerodynamics Laboratory, Depart-
ment of Aerospace Engineering.

fAssistant Professor, Computational Aerodynamics Laboratory, Depart-
ment of Aerospace Engineering; nbalak @aero.iisc.ernet.in (corresponding
author).

1598

More recently, there have also been attempts to use Cartesian grids
in conjunction with meshless solvers [16-19]. In [17,18], although
finite volume-based computations are made for most of the
computational domain, in a layer in the vicinity of the wall boundary,
meshless solvers are used. These attempts are limited to inviscid
calculations. It has been demonstrated in [20] that meshless solvers
also suffer from a lack of positivity of viscous discretization akin to
the finite volume method for Cartesian-mesh calculations. The
development of robust meshless solvers for viscous flow
computations continues to be a topic of research [19]. Therefore,
the success of procedures combining the finite volume and meshless
solver methodologies for viscous Cartesian-mesh calculations can
critically depend on further development in algorithms for meshless
solvers.

One of the interesting advancements in Cartesian-grid calculations
pertains to the development of immersed boundary techniques [21—
25]. These methodologies, primarily developed for incompressible
flow calculations, have recently been extended to compressible flows
involving moderate Reynolds numbers [26]. Further research in this
area is required for exploiting its potential for industrial flow
computations.

Therefore, the search is still on for superior Cartesian-grid
strategies for obtaining solution to viscous flows. The novel grid-
stitching algorithm proposed in this work for generating what are
referred to as Cartesian-like grids is an effort in this direction. In this
paper, we discuss the use of Cartesian-like grids in conjunction with
the finite volume method.

There are two key features of structured mesh that have made it
suitable for viscous flow computations. They are 1) high aspect ratio
volumes and 2) a positive viscous discretization procedure resulting
from simple central differencing. Although the former restricts the
total number of cells required for resolving the viscous layer, the
latter renders code the required robustness. The past experience that
the CFD community has gained in terms of using the hybrid grid for
both unstructured triangular mesh and Cartesian-mesh calculations
clearly reveals the importance of employing a structured grid in the
viscous layer. Inspired by the success of the structured grid methods,
we have evolved a new grid-generation strategy, called the grid-
stitching procedure [13—15], that obviates any special strategy for
filling high aspect ratio quadrilateral volumes in the viscous layer.
The present strategy employs a stretched Cartesian mesh over
streamlined bodies, unlike the conventional procedures that employ
unit aspect ratio cells. This feature is particularly useful for resolving
the viscous layer. In addition to this, we have employed a point-
movement strategy, by which certain Cartesian-grid points are
moved onto the wall; this avoids small cut cells. We have
demonstrated that such a grid-generation strategy can generate a
sufficiently smooth grid close to the wall. We distinguish the grids
generated using the present procedure from those obtained using

http://dx.doi.org/10.2514/1.27854

Mondal, Munikrishna, and Balakrishnan 1599

conventional Cartesian-mesh generators by calling them Cartesian-
like grids. The efficacy of the procedure for solving laminar flows has
been clearly brought out by solving a number of test cases. In our
view, this is a significant development, particularly considering the
renewed interest of the aerospace community in laminar flows past
streamlined bodies. We have had limited success in solving turbulent
flows. At this stage, it is worthwhile to remark that it is impossible to
get physically meaningful wall data from a viscous computation,
even for laminar flows using conventional all-Cartesian-grid
algorithms [6]. Though, in spirit, the present work is similar to one of
the earlier works of Hassan [9], it is different in algorithmic details.
The readers are also referred to an interesting development of a mesh
adjustment scheme for embedded boundaries [27] involving a point-
movement strategy, similar to the one presented in this work.

In the following section, we present the finite volume
methodology used in computations. The grid-stitching algorithm
is described in Sec. III. Section IV is devoted to numerical results
and discussions. Conclusions and future directions are presented
in Sec. V.

II. Numerical Method

In the finite volume method, we discretize the computational
domain into a set of nonoverlapping volumes called the finite
volumes, and the governing equations are integrated over the finite
volumes. The governing equations in conservation form can be
written as

B—U +V-F=0 (1)
ot
where U is the vector of conserved variables, and F is the flux vector.
Expressing Eq. (1) in integral form over an arbitrary finite volume
2;, we obtain the following space-discretized equation:

v, _ 1
—=a XJIFUASJ 6
where J refers to the interface between cell i and its neighboring cell
J, F 1 is the normal flux through the Jth interface, and AS is the area
of the Jth interface. The solution is updated using an implicit time-
integration procedure [28].

In the finite volume method, the gradient at the cell centroid is
required for the purpose of linear reconstruction of the solution to be
used for inviscid flux calculations. The gradient at the face midpoint
is also required for viscous flux computation. In this work, we have
used a diamond path reconstruction procedure [29,30]. In this
method, a covolume is formed around an edge, using the points
forming that edge and the centroids of the cells sharing that edge. In
Fig. 1, covolumes around the edges of a typical Cartesian cell
resulting from the present grid-generation strategy are presented. The
gradient of any scalar ¢ at the centroid of the covolume can be
obtained by the discrete form of Green’s theorem:

1 .
Vo, = Q, Z¢k”kASk 3
X

//

Fig. 1 Diamond path reconstruction.

where €2, is the area of the covolume around face J, and 71, and As;,
are the unit normal and length of the kth edge of the covolume,
respectively. To get the ¢ value at the Gaussian point of the edge
forming the covolume, we have to compute the value of ¢ at the
nodes. The values of scalar ¢ at the nodes can be computed by using
different interpolation strategies such as volume-weighted averaging
or inverse volume-weighted averaging or the use of a pseudo-
Laplacian [29-31]. For the purpose of inviscid flux computations,
the gradient at cell i is obtained by the area averaging of the gradients
at covolumes associated with each of the edges forming the cell under
consideration [29,30]. The computed gradient is limited to satisfy the
monotonicity condition by using a Venkatakrishnan limiter [32].

In the cell-centered finite volume framework, boundary conditions
are satisfied by computing appropriate fluxes for the cell faces falling
on the boundary. For inviscid flows, a mirror boundary condition
[33] is applied on the wall. For viscous flows, a no-slip condition is
enforced on the wall. Also, the wall is assumed to be adiabatic. The
pressure on the wall boundary faces is obtained by extrapolation
from the interior. At the far field, the Reimann boundary condition
[34] is used.

III. Cartesian Grid-Stitching Algorithm

To begin with this strategy, a coarse Cartesian grid is generated.
This grid is adapted recursively, until the grid is fine enough to
resolve a predefined geometric length scale (associated with body
curvature) and a physical length scale (associated with the flow). The
point movement is effected on such a fine grid. The procedure is
presented in the following sections.

A. Creating Initial Background Cartesian Grid

Here, a background coarse Cartesian grid is generated in a box just
enclosing the body of interest. This initial grid is extended to the far
field using an appropriate number of blocks, allowing for a maximum
of one hanging node on any given edge falling on the block
boundary. This strategy effectively curbs the fineness of the body
grid from getting propagated to the far field. In the first block, we may
use stretching in both horizontal and vertical directions or either one
of them. Also, a vertical and a horizontal line are passed through the
convex corner points of the body. This initial grid is subjected to
recursive division, the details of which are discussed in the next
subsection. The recursive cell division module is based on a strategy
employing edge- and cell-based unstructured data, unlike the
routinely used tree data. Such a strategy has been chosen to exploit
some of the preexisting unstructured-data-based adaptive routines
available in the lab. They are also expected to be computationally
more efficient than tree-data-based routines. It is emphasized that no
point movement is effected at this stage. A typical background mesh
over a NACA 0012 airfoil is shown in Fig. 2.

B. Recursive Cell Division

The generation of background Cartesian mesh consists of
recursive division of cells. To begin with, all the Cartesian cells

0.4

0.2

-0.2

0 0.2 0.4 0.6 0.8 1

Fig. 2 Background initial Cartesian grid over a NACA 0012 airfoil.

1600 Mondal, Munikrishna, and Balakrishnan

0.1F

I

-0.1

-0.21

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

Fig. 3 Zoomed view near the flap region.

present in the initial block are considered to be at level zero. When a
cell is refined, the level of all its offspring is incremented by one.
Presently, the level difference between two cells sharing a common
edgeis notallowed to be greater than one. This restricts the number of
hanging nodes on a given edge to one. Also, a maximum of one
hanging node is allowed for a body-cut cell. This enforces the
smoothness in the Cartesian grid all along the body. Also, it ensures a
smooth transition from the fine cells near the body to coarser cells
away from the body, as shown in the Fig. 3. Though the present
strategy involves only isotropic refinement of cells, its extension to
anisotropic refinement is trivial. In the present strategy, the cells are
divided in such a way that will resolve the body geometry as well as
flow physics. The division of a Cartesian cell depends on 1) a
predefined length scale associated with the body geometry (e.g., the
length of the segment defining the body, in a 2-D case) and 2) a
physical length scale based on an estimate of boundary-layer
thickness for a given flow. The second condition can be dispensed
with for grids to be used in inviscid flow computations.

The division process to resolve the body geometry is as follows:
All the cut cells (the Cartesian cell that intersects the body, as shown
in Fig. 4) for which the size is larger than the local length scale
associated with the geometry are refined. The size of the Cartesian
cell is defined as the square root of its area. A Cartesian cell can have
multiple body cuts; in this case, the length corresponding to the
smallest body segment is chosen for comparison. The points on the

Cut Cell

in

-

Fig. 4 Cut cell.

Projection of the cell
corner points on to the
body surface normal

P3

Cut cell

e

I

// Body Edge

Cartesian Edge

Fig. 6 Horizontal cut.

body surface are distributed so that they are clustered in the regions of
high curvature. After the completion of cell refinement based on
geometric criterion, cells are refined for flow physics. For this
purpose, alength scale associated with each cut cell is computed. The
cut cell, for which this length scale is greater than a predefined length
scale associated with flow physics, is flagged for refinement.
Presently, the length scale associated with flow physics is obtained
from an estimated boundary-layer thickness 8. Requiring m layers of
grid lines within the thickness 8, the flow-associated length scale can
be given by §/m. For a conservative estimate of §, we assume
8~ Re~'/2, where Re is the Reynolds number. We suggest the
following two ways of computing the length scale associated with the
cut cell:

1) The corner points of the cut cell are projected onto the body
surface normal defined at midpoint Q of the body segment, as
depicted in Fig. 5a; the maximum of these projected lengths defines
the length scale.

2) The projection of the cut cell centroid on the body surface
normal defines the length scale, as shown in Fig. 5b. The latter will
result in relatively less number of cells and has been used for
generating viscous grids in the present work.

The preceding strategy merely provides the first grid for starting a
solution-adaptive grid refinement. This procedure particularly fits in
the context of solution-adaptive grid refinement/derefinement. In this
paper, solution-based sensor parameters such as V.u and V x u are
used for identifying the cells for further refinement. Interestingly, in
this procedure, refinement or derefinement is always carried out on a
background Cartesian mesh and the point movement is effected after
every adaptation step. It should be recognized that this involves
solution-mapping from the physical grid to the Cartesian grid before
every grid adaptation step.

C. Identifying Body Cuts

The base grid wherein the point movement has not been effected is
referred to as the Cartesian grid; the points and edges corresponding
to this grid are referred to as Cartesian points and Cartesian edges,
respectively. If the body cuts a horizontal Cartesian edge or a vertical
Cartesian edge, it is called a horizontal cut or vertical cut,
respectively. Figures 6 and 7 depict the horizontal and vertical cuts,
respectively.

Projection of the cell
centroid on to the
body surface normal

P4 P3 Cut cell

\ Body
A A
TQ 4TV
P2

Pl Y
/W\/rﬁ

b)

Fig. 5 Estimation of length scale associated with cut cells.

Mondal, Munikrishna, and Balakrishnan 1601

Body Edge

Vertical Edge

—

Fig. 7 Vertical cut.

midy

//

dv2 midx

dhl
dh2

Fig. 8 Condition for diagonal movement.

D. Moving Cartesian Points onto Body Edges

Unstructured data are used for moving the Cartesian points.
Hence, the information about Cartesian edges passing through a
Cartesian point is defined explicitly and stored. A Cartesian point can
undergo the following types of movements in a hierarchical order: 1)
diagonal movement, 2) horizontal movement, and 3) vertical
movement.

1. Diagonal Movement

A Cartesian point is considered as a candidate for diagonal
movement if 1) a horizontal Cartesian edge and a vertical Cartesian
edge passing through that Cartesian point are intersected by the body
and 2) the body cut point is within 50% of the Cartesian edge length.
The condition for the diagonal movement is illustrated in Fig. 8.
From this figure, it can be said that point N will be moved diagonally
if dhl < dh2and dvl < dv2. The Cartesian point is moved onto the
midpoint of the diagonal body cut, which may not be a straight line.
This midpoint is identified by using the bisection method.

2. Horizontal Movement

When the body cuts a horizontal Cartesian edge, then the Cartesian
point closest to the body cut is moved horizontally onto the body, as

| — Body edge

e
|

| — Horizontal
Cartesian edge

Fig. 9 Horizontal movement.

Body edges

a) b)
Fig. 10 Dual point for horizontal movement.

Vertical
Cartesian edge

/

/7* Body edge
\v/

N

Fig. 11 Vertical movement.

shown in Fig. 9. A Cartesian point can also undergo multiple
movements. For example, close to the convex corners, the same
Cartesian point can become a candidate for horizontal movement
with respect to two body cuts. These possibilities are shown in
Fig. 10. Under such a circumstance, a special point (called a dual
point) is created with two sets of coordinates assigned to it.

3. Vertical Movement

Finally, we allow the points for vertical movement. When the body
cuts a vertical Cartesian edge, then the Cartesian point closest to the
body cut is moved vertically onto the body, as shown in Fig. 11.
Similar to the previous case, close to the convex corners, the same
Cartesian point can become a candidate for vertical movement with
respect to two body cuts, as shown in Fig. 12. This special point is
also called a dual point and two sets of coordinates are assigned to it.

E. Identification of the Location of Cartesian Points

In any Cartesian-grid algorithm, it is important to distinguish
points that fall in the computational domain from the nonphysical
points falling within the body contour. To determine such points, the
ray-casting approach [35] is employed. This approach is depicted in
Figs. 13 and 14. A ray is emanated from Cartesian point p in a
particular direction. The number of intersections of the ray with the
contour of the body indicates whether point p lies inside the body or

~ P e Body edge
N
N /ﬁ Body edge
=
N
a) b)

Fig. 12 Dual point for vertical movement.

Body edges

1602

A

Body

Fig. 13 Cartesian point p lies inside the body (five intersections).

A/

N

fay

Fig. 14 Cartesian point p lies outside the body (six intersections).

Mondal, Munikrishna, and Balakrishnan

not. If the number of cuts is even, then the point lies outside and if it is
odd, then the point lies inside the body.

F. Data Collection

Here, the grid data are collected in a format suitable for a flow
solver based on unstructured data and further post processing. These
include coordinates of nodes, nodes constituting a cell, nodes
constituting a face, and left and right cells of a given face.

1. Node Data Collection

The node data are collected by looping over the Cartesian points.
A point is ignored if it lies inside the body. Otherwise, a new node
number and boundary code are attributed to the point and coordinates
are collected. For a dual point, an additional number with boundary
code and coordinates is stored.

2. Cell and Face Data Collection

The cell and face data are collected simultaneously by looping
over the Cartesian cells. It is noted that the maximum level difference
between two cells sharing a face cannot be more than one for the
background Cartesian mesh. Typical body cut cells resulting from
such a procedure are presented in Fig. 15. For a body-cut cell, the
nodes constituting the cell (including the hanging nodes) are
identified along with their new locations after effecting point
movement. For the cell, the nodes not falling inside the body (i.e.,
physical nodes) are ordered for contiguity. For example, in Fig. 15a,
P,, P,, P;, and P, are the points constituting a Cartesian cell without
hanging node, whereas L, L,, and L are the points forming the new
cell in the computational domain after effecting point movement.
This would result in a new cell with L;, L,, and L; as its nodes.
Similarly, in Fig. 15b, P, P,, P3, and P, are the corner points and H is

Py Py

L3

Ly

Ly

P2 1 2
a) b)
Fig. 15 Locally renumbering the cell points.
0.4
0.3
el 11—
[T
Higs
HEH B
5 -
HH)
i
£E:N
H e
HH
[TTo

0.1

0.2

b)

Fig. 16 Grid 1-0 a) zoomed view near leading edge and b) initial grid.

Mondal, Munikrishna, and Balakrishnan

Table 1 Grid details of different geometries

1603

Grid Configuration N, N, N, Number of body points Figure no.
Grid 1-0 NACA 0012 9291 8664 17955 404 16a and 16b
Grid 1-1 NACA 0012 16,855 15,688 32,543 752 -
Grid 1-2 NACA 0012 23,617 21,964 45,581 991 19a
Grid 2 NLR 7301 10805 10,089 20,894 465 22a and 22b
Grid 3 NACA 0012 9038 8427 17,465 382 25a-25¢
Grid 4 NACA 0012 3798 3509 7307 108 27
Grid 5 RAE 2822 34,309 32,718 67,027 1295 29
Table 2 Flow conditions on different geometries

Case Configuration Grid Re M, o Standard/exp result Figure no.
Case 1 NACA 0012 Grid 1-0 - 0.63 20 Fine triangulated grid (HIFUN-2D) 17 and 20
Case 2 NACA 0012 Grid 1-0, Grid 1-1, Grid 1-2 - 0.85 10 Fine triangulated grid (HIFUN-2D) 18, 19b, and 21
Case 3 NLR 7301 Grid 2 - 0.185 6° Van den Berg [39] 23
Case 4 NLR 7301 Grid 2 - 0.185 13.1° Van den Berg [39] 24
Case 5 NACA 0012 Grid 3 5000 0.5 0° Venkatakrishnan [40] 26a and 26b
Case 6 NACA 0012 Grid 4 500 0.85 0° Fortunato [41] 28a and 28b
Case 7 RAE 2822 Grid 5 5.7 x 10° 0.676 1.920 Experiment [42] 30a and 30b
Case 8 RAE 2822 Grid 5 6.5 x 10° 0.73 2.79° Experiment [42] 3laand 31b

Table 3 Grid details for reference data the tables, N, N, and N, stand for the number of points, number of

- - cells, and number of faces, respectively.
Reference grid Configuration N, N, N, Number
of body
points A. Inviscid Flow Computations

Reference grid 1 NACA 0012 5864 11,288 17,152 400

the hanging node between points P, and P, associated with a
Cartesian cell. Here, a new cell is formed in the computational
domain with the physical points L;, L,, L3, and L. The cell is given a
new number.

To collect the face data, the edges forming the background
Cartesian cell are explicitly defined and stored. We associate a flag
with each of these Cartesian edges. To begin with, all the Cartesian
edges are given flag 0. The face data are collected by looping over the
edges forming the Cartesian cell under consideration. Two
consecutive points of newly formed cell are compared with the points
constituting the edges of the Cartesian cell. The Cartesian edge for
which the points match with those consecutive points become a face
in the computational domain. The consecutive points constitute a
newly formed face. The newly formed cell becomes one of the cells
sharing the face. The flag of the Cartesian edge is set to one to avoid
duplication. If a Cartesian edge with flag 1 is encountered, then the
Cartesian cell under consideration becomes the other neighbor cell
sharing that face. If two consecutive points of a newly formed cell do
not match with points constituting any of the edges forming the
Cartesian cell under consideration, a new face is formed with those
points. This face is a body face, and one such face with points L; and
L, is shown in Fig. 15b. In Fig. 16, the zoomed view of the Cartesian
grid generated by this strategy for a NACA 0012 airfoil is shown.

IV. Numerical Results

In this section, various flow simulations for different geometries
are presented. The results have been generated with a cell-centered,
finite volume, two-dimensional high-resolution flow solver on
unstructured meshes (HIFUN-2D). To compute inviscid fluxes, van
Leer [36] and Roe [37] flux formulas are used for inviscid and
viscous flow computations, respectively. Convergence acceleration
is attained by using the symmetric Gauss—Seidel (SGS) implicit
relaxation procedure [28,38]. The different grids and flow conditions
used in validating the algorithm are presented in Tables 1 and 2,
respectively. The outer boundary is located around 10 chords away
from the airfoil. The grid used for generating reference data for
inviscid flow past a NACA 0012 airfoil is summarized in Table 3. In

Two standard test cases (cases 1 and 2 in Table 2) corresponding to
inviscid flow past a NACA 0012 airfoil have been considered for
validation. A Cartesian mesh is easily generated around this
geometry. Figures 16a and 16b show the zoomed view at the leading
edge and the close-up view of grid 1-0, respectively. Mach contours
obtained for these test cases in a zero-level grid are shown in Figs. 17

Fig. 17 Case 1 Mach contours over a NACA 0012 airfoil using grid 1-0;
M, =0.63and o =2°.

Fig. 18 Case 2 Mach contours over a NACA 0012 airfoil using grid 1-0;
M, =0.85and o =1°.

1604 Mondal, Munikrishna, and Balakrishnan

i

051

0.4

0.3

o H
o [T1]

-0.2 0 0.2 0.4 0.8 1

b)

Fig. 19 Grid 1-2 a) level-2 grid and b) Mach contours; M, = 0.85 and o = 1°.

and 18. Because of the poor grid resolution in the shock region for the
transonic test case, the shock is smeared. Therefore, two levels of
solution-based adaptation are considered. The final grid after two
levels of adaptation is shown in Fig. 19a. Figure 19b shows the Mach
contours obtained on a level-2 grid. The computed C, distribution
for test case 1 is compared with reference data in Fig. 20. In Fig. 21,
C, distributions of level 0, level 1 and level 2 are shown with

—— Fine Triangular Grid
- - - Cartesian

-1.5 L .
-0.5 0 0.5 1

x/c
Fig. 20 Case1C, distribution for aNACA 0012 airfoil (M, = 0.63 and
a=2%.

— Fine Triangular Grid

- - - Cartesian-L0 I

-- Cartesian-L1
Cartesian-L2

- '50 Of‘ 0f2 063 0f4 0f5 066 0f7 068 0.9 1

x/c
Fig. 21 Case 2 C, distribution on different levels of grid over a NACA
0012 airfoil (M,, = 0.85 and o = 1°).

reference data. Itis noted that the reference data are obtained by using
the HIFUN-2D solver on a fine triangular grid (reference grid 1 in
Table 3). The computed results compare well with the reference data,
and the upper and lower surface shocks are captured accurately.
Table 4 presents a comparison of the C; and Cp predicted by the
present method and the benchmark AGARD [43] data. The
computed results compare well with the standard results.

The computations have also been performed for inviscid flow past
an NLR 7301 airfoil with slotted flap (test cases 3 and 4 in Table 2).
The close-up view of the airfoil and zoomed view in the slotted
region between the main airfoil and flap are shown in Figs. 22a and
22b, respectively. The pressure distributions obtained for these test
cases are shown in Figs. 23 and 24, along with the standard
experimental results [39].

B. Laminar Flow Computations

Two test cases (cases 5 and 6) involving laminar flow past a
NACA 0012 airfoil have been considered. For the validation of
case 5, grid 3, involving a maximum aspect ratio of 30, has been used.
Zoomed views of the grid at the leading-edge, midchord, and
trailing-edge locations are shown in Figs. 25a—25c, respectively. The
computed pressure and skin friction coefficients are compared with
the standard results in Figs. 26a and 26b. The aerodynamic
coefficients and separation point for the preceding case are compared
with the standard data [40] in Table 5. The flow separates at 81.3%
from the leading edge and this is in good agreement with
Venkatakrishnan’s [40] result. The second test case (case 6) involves
transonic laminar flow past a NACA 0012 airfoil. The zoomed view
of grid 4 used in this computation is shown in Fig. 27. Interestingly,
the present procedure involving a flow-based adaptation strategy
results in a coarser grid for this low Reynolds number case, compared
with the previous grid 3. The maximum aspect ratio in this case is
around 10 for the body cells. It is important to note that the grid
adaptation is performed at a preflow solver stage itself and no
solution-based adaptation is effected. Computed pressure and skin
friction coefficients distributions compare well with the standard
data [41], as shown in Figs. 28a and 28b.

The excellent comparison of the results obtained for the laminar
flow cases with the standard cases clearly establishes the efficacy of

Table 4 Comparison of computed aerodynamic coefficients with
standard data [43] for cases 1 and 2

Cases AGARD [43] Present Method

CL Cp CL Cp
Case 1 0.3335 - 0.3047 -
Case 2 0.3790 0.0576 0.3313 0.05484

Mondal, Munikrishna, and Balakrishnan

1605

0.6
0.15F
0.4
0.1
02 008t [=i
H FEsREES — o a5
H =5
o .
. 0.05 = !+ HHHH T :t‘h
o He R =S PR i
I S,
Py T
-0.2H ~01 R>~,.% L
1T
1T
-0.15 1T
-0.4F
-0.2f
-0.6F 1 1 1 1 1 Al 1 1 1 1 Al 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.75 0.8 0.85 0.9 0.95 1 1.05 11 1.15 1.2 1.25
a) b)
Fig. 22 Grid 2 a) around an NLR 7301 airfoil and flap and b) zoomed view in the slotted region.
8 T T T 14 T T T
T * - Cartesian 1 1ok x - Cartesian |
: N ;
* Experiment [39] (turb) Experiment [39] (turb)
o
101 4
5F 4
8 4
ab]
o
OQ 3F 4 (_I) 6F 4
T
er] 4r 4
1F 4
2r 4
ofF 4
ofF 4
-1F 4
" . . .
2 L L L -0.5 0 0.5 1 15
-0.5 0 0.5 1 15
x/c x/c

Fig. 23 Case 3 C, distribution over an NLR 7301 airfoil and flap;
M., =0.185 and o = 6".

the present grid-generation procedure for computing such flows. In
our view, it has been possible to generate these solutions because of
the smoothness of the grids generated using the grid-stitching
procedure. Also, itis expected that the requirement on grid quality for
turbulent flow calculations using large-eddy simulation (LES) tools
is similar to the one presented for the laminar flows, although a much
finer grid may be required. In such a case, employing the present
methodology, it is possible to simulate laminar separated flows at
moderate Reynolds numbers, encountered in variety of aerospace
applications such as mini-aerial vehicles and flapping wings. In our
view, the real challenge in extending the utility of the Cartesian-grid
algorithms lies in computing turbulent flows by solving Reynolds-
averaged Navier—Stokes (RANS) equations. This invariably

Fig. 24 Case 4 C, distribution over an NLR 7301 airfoil and flap;
M., =0.185 and « = 13.1°.

involves higher aspect ratio cells on the walls. The extension of the
present methodology for RANS calculation is presented in the next
section.

C. Turbulent Flow Computations

Two standard turbulent flow test cases involving a RAE 2822
supercritical airfoil are considered for validating the algorithm.
Turbulent flow computations have been made using the Baldwin and
Lomax turbulence model [44] and are compared with standard
experimental data [42]. The grid used for these computations (grid 5)
is presented in Fig. 29. For this class of computations, a structured
mesh calculation would typically involve cells with an aspect ratio of

-0.01

-0.02

-0.03

-0.01

-0.015|

-0.02

-0.025|

I =N
0.01 0.02 003 0.04 0.05 0.06 0.5

a) b)

Fig. 25 Zoomed views of grid 3: a) leading edge, b) midchord, and c) trailing edge.

c)

97

1606

0.6 T T T T T

—— Venkatakrishnan [40]

04k - - - Cartesian

|

0.2r

“o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

a)

Mondal, Munikrishna, and Balakrishnan

0.2 T T T T

—— Venkatakrishnan [40]
- - - Cartesian

b)

Fig. 26 Case § a) C, distribution and b) Cy; R, = 5000, M, = 0.5, and « = 0°.

the order of 1000. This can be easily seen by the fact that the first
pointin the boundary layer is placed at a distance of 10> for an airfoil
of unit chord, with approximately 100 stations in the horizontal
direction. As indicated before, any turbulent flow calculation
involving Cartesian mesh should necessarily mimic this feature of
the structured mesh for the resulting grid to have areasonable number
of cells. In our attempt, we have generated the zero-level grid by
invoking about 80 horizontal stations along the x direction and
holding the y-grid spacing uniform in the body block. Isotropic
refinement of the resulting zero-level grid is effected by using both
the geometric and flow-based refinement criteria, as indicated in
Sec. IIL.B. This results in a grid with 1295 points on the wall and a
maximum aspect ratio of about 100 for the wall cell. It is important to
note that anisotropic refinement would have resulted in a lesser
number of wall cells. It is easy to see that use of unit aspect ratio cells
close to the wall would have resulted in as many as 10,000 wall cells
for the same kind of grid resolution. This observation has serious
implications in 3-D turbulent flow computations. It is also

Table 5 Comparison of computed aerodynamic coefficients with
standard data [40] for case 5

Cp, Cp, Cp Separation
Present method 0.02746 0.03411 0.06157 81.3%
Venkatakrishnan [40] 0.02297 0.03247 0.05544 81.0%

0.6 T T T T T T T T T

-1.2}f — Fortunato [41]
- - - Cartesian

14 L L L L L L
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

a)

worthwhile to compare the present grid with a body-fitted grid; the
same kind of grid resolution could have been attained with just about
200 wall cells. It also has an advantage of resolving the boundary
layer in a direction normal to the wall. In contrast, in the present grid,
the normal distance of the centroids of the wall cells from the wall
resolves the boundary layer, resulting in a greater number of wall
cells. Nevertheless, this may be considered as a best compromise for

0.4F

0.2F

I

)
T
TITHTITIT

-0.2F

T T T T T T T

-0.2 0 0.2 0.4 0.6 0.8 1 12

Fig. 27 Grid 4 over a NACA 0012 airfoil for viscous flow.

0.5 T T T T T T

041

—— Fortunato [41]
- - - Cartesian

03[q

~05 L L L L L L L L L
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

x/c
b)

Fig. 28 Case 6 a) C, distribution and b) C, distribution; R, = 500, M, = 0.85, and o = 0°.

Mondal, Munikrishna, and Balakrishnan 1607

Average y™ values for the body cells are found to be 10 and 15 for
subsonic and transonic test cases, respectively. Wall pressure
distribution and Mach contours are shown in Figs. 30a and 30b,
respectively, for the subsonic turbulent test case (case 7). The
computed wall pressure distribution is in good agreement with the
experimental data [42]. Test case 8 corresponds to the transonic
turbulent flow. Referring to Fig. 31a, the computed pressure
distribution is closely matching with the experimental data [42] and
is devoid of oscillations. Mach contours shown in Fig. 31b indicate
the formation of a shock on the upper surface of the airfoil. Table 6
presents the comparison of predicted lift and drag coefficients against
the experimental data [42] for the transonic test case. The computed
aerodynamic coefficients agree well with the experimental values.
The good agreement of the lift coefficient does not come as a surprise,
because the pressure distribution has been predicted accurately. On
the other hand, the agreement of the drag coefficient is good, in spite

o o1 03 03 o4 o5 05 o7 o8 oo 1 of an oscillatory skin friction distribution. This could be because the

Fig. 29 Grid 5 over RAE 2822 airfoil for turbulent flow. major component of the total drag coefficient comes from the wave

drag (almost 70%). The oscillatory skin friction distribution is

. .) .) . attributed to a nonpositive viscous flux discretization procedure. In
resolving the flow past streamlined bodies using Cartesian grids. It spite of this deficiency, even the fact that the pressure distribution has
should also be remarkgd thgt the total numbgr of cells resulting from been captured accurately for turbulent flows with Cartesian grids
th? present procedure is St'lll comparable with that of'a body-fitted clearly establishes the efficacy of the grid-stitching strategy in
grid, simply because the grid fineness close to the body is not allowed generating smooth grids for turbulent flows. Nevertheless, any
to propagate to the far field. further development in Cartesian-mesh calculations will critically

* Experiment [42]
—— Cartesian

1 4

15 L L L L L L L L L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/c

a) b)
Fig. 30 Case 7 a) C, distribution and b) Mach contours; R, = 5.7 x 10%, M, = 0.676, and o = 1.92°.

* Experiment [42]
Cartesian

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a) b)
Fig. 31 Case 8 a) C, distribution and b) Mach contours; R, = 6.5 x 10°, M, = 0.73, and o = 2.79°.

1608 Mondal, Munikrishna, and Balakrishnan

Table 6 Comparison of computed aerodynamic coefficients with
standard data [42] for case 8

Case Experiment [42] Present method
C, L C D CL Cl)
Case 8 0.8030 0.0168 0.8321 0.01743

depend on evolving positive schemes for viscous flux discretization
[301.

V. Conclusions

A novel grid-stitching algorithm has been developed for
generating Cartesian-like grids. The procedure involves identifi-
cation of the streamline direction and stretching the Cartesian grid
suitably. This may be considered as an aspect that brings in human
intervention, thereby reducing the possibility of automated grid
generation. In our view, because of the inseparability of the flow
physics and the computation, this is the minimum intervention
essential for any meaningful viscous computation. It is important
to note that the user intervention required for the present strategy is
less intense than that required for Cartesian-mesh-based strategies
employing structured grids in the viscous region [4,11]. In the
present strategy, use of tree data could be an important component
of the background Cartesian-mesh generation. This has not been
exploited in this work. On the contrary, the grid data associated
with the flow solver are recommended to be handled using
unstructured data. The excellent laminar solution and an
acceptable wall pressure distribution for turbulent flow presented
in this paper clearly establish the efficacy of the proposed
Cartesian-grid-generation procedure. Therefore, in our view, the
grid-stitching algorithm provides an effective guideline for the
future Cartesian-mesh-generation strategies. But we should also be
reminded that any further success in all-Cartesian-grid calculations
would critically depend on evolving a positive viscous flux
discretization procedure.

References

[1] Arpaci, V. S., Conduction Heat Transfer, Addison—Wesley, London,
1966, pp. 492-493.

[2] Coirier, W.J., “An Adaptively-Refined, Cartesian, Cell-Based Scheme
for the Euler and Navier-Stokes Equations,” Ph.D. Thesis, Department
of Aerospace Engineering, Univ. of Michigan, Ann Arbor, MI,
Jan. 1994,

[3] Zeeuw, D. D., and Powell, K. G., “An Adaptively Refined Cartesian
Mesh Solver for the Euler Equations,” Journal of Computational
Physics, Vol. 104, No. 1, 1993, pp. 56-68.

[4] Philippe, G., “An Implicit Upwind Finite Volume Method for
Compressible Turbulent Flows on Unstructured Meshes,” Ph.D.
Thesis, Univ. of Liege, Liege, Wallonia, Belgium, Apr. 1999.

[5] Clarke, D. K., Salas, M. D., and Hassan, H. A., “Euler Calculations for
Multi Element Airfoils Using Cartesian Grids,” AIAA Journal, Vol. 24,
No. 3, 1986, pp. 353-358.

[6] Coirier, W. J., and Powell, K. G., “Solution-Adaptive Cartesian Cell
Approach for Viscous and Inviscid Flows,” AIAA Journal, Vol. 34,
No. 5, 1996, pp. 938-945.

[7]1 Wang, Z.]J., and Chen, R. F., “Anisotropic Cartesian Grid Method for
Viscous Turbulent Flow,” AIAA Paper 2000-0395, 2000.

[8] Wang, Z. J., “A Quadtree-Based Adaptive Cartesian/Quad Grid Flow
Solver for Navier-Stokes Equations,” Computers and Fluids, Vol. 27,
No. 4, 1998, pp. 529-549.

[9] Frymier, P. D., Jr., Hassan, H. A., and Salas, M. D., “Navier-Stokes
Calculations Using Cartesian Grids, 1: Laminar Flows,” AIAA Journal,
Vol. 26, No. 10, 1988, pp. 1181-1188.

[10] Fenno, C. C., Jr., Newman, P. A., and Hassan, H. A., “Unsteady
Viscous-Inviscid Interaction Procedures for Transonic Airfoils Using
Cartesian Grids,” Journal of Aircraft, Vol. 26, No. 8, 1989, pp. 723—
730.

[11] Delanaye, Michel, Aftosmis, M. J., Berger, M. J., Liu, Y., and Pulliam,
T. H., “Automatic Hybrid-Cartesian Grid Generation for High-
Reynolds Number Flows Around Complex Geometries,” AIAA

Paper 99-0777, Jan. 1999.

[12] Smith, R. J., and Leschziner, M. A., “Automatic Grid Generation for
Complex Geometries,” The Aeronautical Journal, Vol. 100, No. 991,
Jan. 1996, pp. 7-14.

[13] Mondal, P., “Cartesian-Like Grids Using a Novel Grid-Stitching
Algorithm for Viscous Flow Computations,” M.S. Thesis, Dept. of
Aerospace Engineering, Indian Inst. of Science, Bangalore, India,
Apr. 2005.

[14] Mondal, P., Munikrishna, N., and Balakrishnan, N., “Computation of
Viscous Compressible Flows Employing Cartesian-Like Grids,”
Proceedings of the 18th National Convention of Aerospace Engineers,
1T Kharagpur, India, 2004, pp. 140-146.

[15] Mondal, P., Munikrishna, N., and Balakrishnan, N., “Viscous Flow
Computations Using Cartesian-Like Grids,” Proceedings of the Sth
Annual AeSI CFD Symposium, CP25, National Aerospace Labs.,
Bangalore, India, 2005..

[16] Morinishi, K., “A Gridless Type Solver for Parallel Simulation of
Compressible Flow,” Parallel Computational Fluid Dynamics,
Development and Applications of Parallel Technology, Elsevier
Science, New York, 1999.

[17] Luo, H., Baum, J. D., and Lohner, R., “A Hybrid Cartesian Grid and
Gridless Method for Compressible Flows,” AIAA Paper 2005-0492,
Jan. 2005.

[18] Kirshman, D.J., and Liu, F., “A Gridless Boundary Condition Method
for the Solution of the Euler Equations on Embedded Cartesian Meshes
with Multigrid,” Journal of Computational Physics, Vol. 201, No. 1,
2004, pp. 119-147.

[19] Munikrishna, N., Karthikeyan, N., and Balakrishnan, N., “A Meshless
Solver for Computing Viscous Flows on Cartesian-Like Grids,”
Computational Fluid Dynamics 2006 (to be published).

[20] Ninawe, A., Munikrishna, N., and Balakrishnan, N., “Viscous Flow
Computations Using A Meshless Solver, LSFD-U,” Computational
Fluid Dynamics 2004, edited by C. Groth and D. W. Zingg, Springer—
Verlag, Berlin, 2004, pp. 509-514.

[21] Ye, T., Mittal, R., Udaykumar, H. S., and Shyy, W., “An Accurate
Cartesian Grid Method for Viscous Incompressible Flows with
Complex Immersed Boundaries,” Journal of Computational Physics,
Vol. 156, No. 2, 1999, pp. 209-240.

[22] Roma, A. M., Peskin, C. S., and Berger, M. J., “An Adaptive Version of
the Immersed Boundary Method,” Journal of Computational Physics,
Vol. 153, No. 2, 1999, pp. 509-534.

[23] Tseng, Y.-H. and Ferziger, J. H., “A Ghost-Cell Immersed Boundary
Method for Flow in Complex Geometry,” Journal of Computational
Physics, Vol. 192, No. 2, 2003, pp. 593-623.

[24] Majumdar, S., Iaccarino, G., and Durbin, P., “Navier Stokes Solvers
Using Adaptive Boundary-Non-Conforming Cartesian Grids,”
Proceedings of the 6th Annual AeSI CFD Symposium, CP12, National
Aerospace Labs., Bangalore, India, 2003.

[25] Taccarino, G., and Verzicco, R., “Immersed Boundary Technique for
Turbulent Flow Simulations,” Applied Mechanics Reviews, Vol. 56,
No. 3, 2003, pp. 331-347.

[26] De Tullio, M. D., De Palma, P., laccarino, G., Pascazio, G., and
Napolitano, M., “Immersed Boundary Technique for Compressible
Flow Simulations on Semi-Structured Grids,” Computational Fluid
Dynamics 2006 (to be published).

[27] Sachdev, J. S., and Groth, C. P. T., “A Mesh Adjustment Scheme
for Embedded Boundaries,” Computational Fluid Dynamics 2004,
edited by C. Groth and D. W. Zingg, Springer, Berlin, 2004, pp. 109—
114.

[28] Shende, N. and Balakrishnan, N., “New Migratory Memory Algorithm
for Implicit Finite Volume Solvers,” AIAA Journal, Vol. 42, No. 9,
Sept. 2004, pp. 1863-1870.

[29] Jawahar, P., and Kamath, H., “A High-Resolution Procedure for Euler
and Navier-Stokes Computations on Unstructured Grids,” Journal of
Computational Physics, Vol. 164, No. 1, 2000, pp. 165-203.

[30] Munikrishna, N., and Balakrishnan, N., “Computing Viscous Flows on
Unstructured Meshes with Hanging Nodes,” Proceedings of the 7th
Annual AeSI CFD Symposium, CP13, National Aerospace Labs.,
Bangalore, India, 2004.

[31] Holmes, D. G., and Connel, S. D., “Solution of the 2D Navier-Stokes
Equations on Unstructured Adaptive Grids,” AIAA Paper 89-1932-CP,
1989.

[32] Venkatakrishnan, V., “Convergence to Steady State Solutions of the
Euler Equations on Unstructured Grids with Limiters,” Journal of
Computational Physics, Vol. 118, No. 1, 1995, pp. 120-130.

[33] Balakrishnan, N., and Fernandez, G., “Wall Boundary Conditions for
Inviscid Compressible Flows on Unstructured Meshes,” International
Journal for Numerical Methods in Fluids, Vol. 28, No. 10, 1998,
pp. 1481-1501.

Mondal, Munikrishna, and Balakrishnan 1609

[34] Hirsh, C., Numerical Computation of Internal and External Flows,
Vol. 2, Wiley, New York, 1988, pp. 346-347.

[35] Milgram, M. S., “Does a Point Lie Inside a Polygon?,” Journal of
Computational Physics, Vol. 84, No. 1, 1989, pp. 134-144.

[36] Van Leer, B., “Flux Vector Splitting for Euler Equations,” Inst. for
Computer Applications in Science and Engineering, Rept. 82-30,
NASA Langley Research Center, Hampton, VA, 1982.

[37] Roe, P. L., “Approximate Reimann Solvers, Parameter Vectors and
Difference Schemes,” Journal of Computational Physics, Vol. 43,
No. 2, 1981, pp. 357-372.

[38] Yoon, S., and Jameson, A., “Lower-Upper Symmetric-Gauss-Seidel
Method for the Euler and Navier-Stokes Equations,” AIAA Journal,
Vol. 26, No. 9, Sept. 1988, pp. 1025-1026.

[39] Van den Berg, B., “Boundary Layer Measurements on a Two-
Dimensional Wing with Flap,” Dutch National Aerospace Laboratory

(NLR), Rept. TR-79009 U, 1979.

[40] Venkatakrishnan, V., “Viscous Computations Using A Direct Solver,”
Computers and Fluids, Vol. 18, No. 2, 1990, pp. 191-204.

[41] Fortunato, B., and Magi, V., “An Implicit Lambda Method for 2-D
Viscous Compressible Flows,” Proceedings of the 14th International
Conference on Numerical Methods in Fluid Dynamics, Springer—
Verlag, Berlin, 1994, pp. 259-264.

[42] Cook, P. H., Mc Donald, M. A., Firmin, M. C. P., “Aerofoil RAE 2822-
Pressure Distribution, and Boundary Layer, and Wake Measurement,”
AGARD AR-138, May 1979.

[43] Anon., “Inviscid Flow Field Methods,” Fluid Dynamics Panel Working
Group, AGARD Advisory Rept. 211, July 1985.

[44] Baldwin, B. S., and Lomax, H., “Thin Layer Approximation and
Algebraic Model for Separated Turbulent Flows,” AIAA Paper 78-257,
1978.

